

CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the November 2003 question papers

0580/0581 MATHEMATICS

0580/01, 0581/01 Paper 1 (Core), maximum raw mark 56

0580/02, 0581/02 Paper 2 (Extended), maximum raw mark 70

0580/03, 0581/03 Paper 3 (Core), maximum raw mark 104

0580/04, 0581/04 Paper 4 (Extended), maximum raw mark 130

These mark schemes are published as an aid to teachers and students, to indicate the requirements of the examination. They show the basis on which Examiners were initially instructed to award marks. They do not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the *Report on the Examination*.

CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the November 2003 question papers for most IGCSE and GCE Advanced Level syllabuses.

Grade thresholds taken for Syllabus 0580/0581 (Mathematics) in the November 2003 examination.

	maximum minimum mark required for grade:				
	mark available	А	С	E	F
Component 1	56	-	46	35	28
Component 2	70	51	28	16	-
Component 3	104	-	68	44	38
Component 4	130	101	59	36	-

The threshold (minimum mark) for B is set halfway between those for Grades A and C. The threshold (minimum mark) for D is set halfway between those for Grades C and E. The threshold (minimum mark) for G is set as many marks below the F threshold as the E threshold is above it.

Grade A* does not exist at the level of an individual component.

		MAN
Notes	Mark Scheme	Syl
	IGCSE EXAMINATIONS – NOVEMBER 2003	0580/0
	TYPES OF MARK	Syl Dana Cambridge Com
lost of the marks rawings or state	s (those without prefixes, and 'B' marks) are given for ments.	

TYPES OF MARK

- **M** marks are given for a correct method.
- **B** marks are given for a correct statement or step.
- **A** marks are given for an accurate answer following a correct method.

ABBREVIATIONS

a.r.t.	Anything rounding to
b.o.d.	Benefit of the doubt has been given to the candidate
c.a.o.	Correct answer only (i.e. no 'follow through')
e.e.o.	Each error or omission
o.e.	Or equivalent
SC	Special case
s.o.i.	Seen or implied
WW	Without working
www	Without wrong working
	Work followed through after an error: no further error made
√-	Work followed through and another error found

November 2003

INTERNATIONAL GCSE

MARK SCHEME

MAXIMUM MARK: 56

SYLLABUS/COMPONENT: 0580/01, 0581/01 MATHEMATICS Paper 1 (Core)

			mm.
Page 1 Mark Scheme Syllabus	Page 1	Mark Scheme	Syllabus
IGCSE EXAMINATIONS – NOVEMBER 2003 0580/0581		IGCSE EXAMINATIONS – NOVEMBER 2003	0580/0581

. u	ye i	IGCSE EXAMINATIO	NS – NOVEMBE	R 2003 0580/0581	2
					Call
Question Number		Mark Scheme Details			
1		400 (grams) 1			1
2		(\$)2.7(0)	2	Synabus Syn	2
3 (a)		<u>2</u> 5	1	Accept equivalent fractions, decimals, percentages (with sign)	_
	(b)	0	1	accept $\frac{0}{5}$, $\frac{0}{k}$ do not accept,	2
4 (a)		126°	1	none, not but condone it with 0	
	(b)	40(%)	2	M1 for $\frac{144}{360} \times 100$ o.e.	3
5		1.71(01)	2	M1 for 5 sin 20° or 5 cos70° or 1.7	2
6		6 or $\frac{6}{1}$	2	M1 for $\frac{60}{10}$, $\frac{1}{\frac{1}{6}}$, $\frac{1}{\frac{10}{60}}$	2
7		144°	3	M2 for $\frac{(2\times10-4)\times90}{10}$ or $\frac{(10-2)\times180}{10}$ or $180-\frac{360}{10}$. After 0, SC1 for answer 36°	3
3		1250 ≤ r.l. < 1350	1 + 1	SC1 if reversed	2
9	(a)	10x ² – 15xy	2	B1 for one term correct	
	(b)	6x (x + 2)	2	M1 for $6(x^2 + 2x)$ or $x(6x + 12)$ or $2(3x^2 + 6x)$ or $2x(3x + 6)$ or $3(2x^2 + 4x)$ or $3x(2x + 4)$	4
10	(a)	87°	1		
	(b)	28°	1		
	(c)	62° √	1	f.t. is (90 – y)	3

Page 2	Mark Scheme	Syllabus
	IGCSE EXAMINATIONS – NOVEMBER 2003	0580/0581

Par	ge 2	Mark Scheme		Syllabus		
гау	<u>je 2</u>	IGCSE EXAMINATIONS – NOVEMBER 2003 0580/0581				
					Call	
11			1	Syllabus 0580/0581 Lines may be freehand but must go completely through the shape	D	
			1			
		Any line through the centre	1		3	
12		x = 4, y = 12	3	M1 for attempting to eliminate one unknown by a correct method A1 for one correct value (x or y)	3	
13	(a)	(i) 2.4096	1			
		(ii) 2.41 √	1	f.t. from (i)		
	(b)	19.3 or 19.32(16)	2	B1 for 2.68 seen or implied by 19.2	4	
14	(a)	Monday, Tuesday and Saturday	1	All three and no extras		
	(b)	-20	3	B1 for -14 seen + M1 for (their -14) ÷ 7	4	
15	(a)	(i) 0.28	1			
		(ii) 0.275	1			
		(iii) 0.2857 or 0.286	1		4	
	(b)	$\frac{275}{1000}$, 28%, $\frac{2}{7}$ or equivalent $\sqrt{}$	1	f.t. from (a)		
16	(a)	4.58(m)	2	M1 for $\sqrt{5^2 - 2^2}$ s.o.i. e.g. $\sqrt{21}$		
	(b)	66.4o or 66.3o – 66.45o	2	M1 for $\cos^{-1} \frac{2}{5}$ o.e. incl $\sqrt{}$	4	

Page 3	Mark Scheme	Syllabus
	IGCSE EXAMINATIONS – NOVEMBER 2003	0580/0581

Pag	e 3		Mark Scheme Syllabus				
		IGCSE EXAM	INATIONS - NOVE	MBE	R 2003	0580/0581	2
							an
7	(a)	3		1	10 ⁸ etc. pen	alise once only	
	(b)	-4		1	accept -04	Syllabus 0580/0581 alise once only	`
	(c)	0		1			4
	(d)	-2		1			
8	(a)	0.4 or 2.6		2	B1 for one of SC1 if (0.4,0		
	(b)	(i) 0		1	,	, , , ,	
		(ii) Correct line x = 4	e from x = -1 to	1	Must be rule	ed	6
	(c)	(0,1), (4,5) √		2	B1 for one of f.t. from (b)		_

November 2003

INTERNATIONAL GCSE

MARK SCHEME

MAXIMUM MARK: 70

SYLLABUS/COMPONENT: 0580/02, 0581/02

MATHEMATICS

Paper 2 (Extended)

Page 1	Mark Scheme	Syllabu
	IGCSE EXAMINATIONS – NOVEMBER 2003	0580/0581

				mm.
Pag		Scheme	IDED 2002	Syllabu
	IGCSE EXAMINATIO	NS – NOVEN	IBER 2003	0580/0581
	* indicates that it is necessary to	look in the w	orking following a	Syllabu 0580/0581 wrong answer
1	0.5 or $\frac{1}{2}$ c.a.o.	1		36.CO
2	(-)4504	1	Allow (-)4500	
3	(a) 121 (b) (n + 1) ²	1 1	Allow 49, 64, 8 n ² + 2n + 1	
4	3/2500, 1/8, 0.00126	2*		luated as decimals (or centages or stand. form)
			SCT reversed to	order
5	(a) -1, $\sqrt{36}$	1 1	Allow $-1, \pm 6$	d (b) $\sqrt{36}$, $\sqrt{2}$, $\sqrt{30}$
	(b) $\sqrt{2}$, $\sqrt{30}$	·	SCT (a) -T and	u (b) √30 ,√2 ,√30
6	I = mr/5	2*	M1 for $\frac{240 \times r \times r}{100}$ (×1	o.e.
7	66.7	2	M1 for $\frac{2.4}{3.6} \times 10^{-1}$	0 o.e.
8	(a) -1 (b) 5k	1 1		
9	(a) 32000 (b) 254 <u>50</u> 255 <u>50</u>	1 1, 1	SC1 both corre	ect and reversed
10	11.5(2)	3*	M1 F = kv^2 M1	k = 18/40 ² or better
11	(a) 3110	2*		0.623 or 1936 x 1.61 , 3107.5, 3108 or
	(b) 322	1 √	1000000 ÷ (a)	
12	(a) 45, 225 (b) 157.5	1, 1	Allow 158	
13	(a) 5.5 or 5½ (b) 21.5	1 2*	M1 172 ÷ 8	
14	$(a) \frac{x+3}{x(x+1)}$	3*	M1 3(x + 1) - 2 M1 denominate	
	(b) -3	1 √		

Page 2	Mark Scheme	Syllabu	0
	IGCSE EXAMINATIONS – NOVEMBER 2003	0580/0581	100

Page 2	Mark Sci		IDED COOS	Syllabu
	IGCSE EXAMINATIONS	- NOVEN	IBER 2003	0580/0581
5 (a) a	angle bisector of angle P	2*		instruction method A1
(b) r	radius from T or U	2*		Syllabu 0580/0581 Instruction method A1 rate line but no arcs lwn, meets (a) and O 1°
(a) (b) (c) (c)		1, 1 2* 1 √	SC1 correct a M1 (AB ²) = "((and reversed 0 –2) ² + "(-6 -0) ² from
(a) 2 (b) 3 (c) 6 (d)	20 98 52 124 36	1 1 1 1 1 √	(b) – (c)	
(b) 9	5.8 x 10 ⁸ 98 10200	1 2* 2*	_	figs 59 or figs 9830508 figs 58 x 10 ⁿ or $\frac{1}{(b)}$ x 10 ⁿ
(b) (6(i) 0.4(ii) (0.4, 0.2)	2 2 1	M1 1 – 2(7/2) M1 $\frac{5x}{2}$ o.e., 2	2 - 4x = x or better
(a) ((i) $-^2/_3$ p + q (ii) $-^3/_4$ q + p	2* 2*		${\bf Q} = \pm^2/_3 {\bf p} \pm {\bf q} \text{ or AO + OQ} {\bf Q} = \pm^3/_4 {\bf q} \pm {\bf p} \text{ or BO + OP}$
(b) ¹	$I_3 \mathbf{p} - {}^1 I_2 \mathbf{q}$	2*	M1 - $^{1}/_{4}$ q + $^{1}/_{3}$ E	3P
(b) >	60x + 80y ≤1200 seen < ≥ y ine y = x	1 1 1	Allow 0.6x + 0	0.8y ≤ 12
` ´	ine through (20,0) and (0,15) shading out or R labelled 20 c.a.o.	2* 1 1	M1 intention Dep. on both Allow 20, 0 or	lines

TOTAL MARKS 70

November 2003

INTERNATIONAL GCSE

MARK SCHEME

MAXIMUM MARK: 104

SYLLABUS/COMPONENT: 0580/03, 0581/03

MATHEMATICS

Paper 3 (Core)

Page 1	Mark Scheme	Syllabus	· 6
	MATHEMATICS – NOVEMBER 2003	0580/0581	100

Page	1		/lark Sc	heme	Syllabus	.D.
				OVEMBER 2003 0	580/0581	apa
Question lumber	Mark S	cheme	Part Marks	Notes	Syllabus 0580/0581	Que Total
a)	24		1			
b)	25 or 5 ² 27 or 3 ³		1			
c) d)	27 or 3		1			
u)	29		1			
e)	26		1	condone 6, 26 or 6 x 26		
f)	28 cao		1	1 04 07		
g)	21 and 2		1	condone 21 x 27		8
a) i) ii)	1300 or 1	μπ	1	allow 10.30, 10:30 etc		
iii)	9		2	B1 for either 24 or 33 seen or M1 for 2 correct horizont	al lines	
b) i)	4.35, 8.7	(0)	2	drawn or 24 and 33 marked B1 for one correct	d on axis	
<u>(ii)</u> ii)	Correct s	traight line	2	P1 for (5, 4.2 to 4.4) or (10,	8.6 to	
,	(through	(10, 8.6 to 8.8)		8.8)		
iii)	9.2(0) (± 0.1)	1	no ft.		
iv)	575 (±	5)	1	no ft.		10
a)	6000		2	M1 for 25 x 30 x 8		<u>18</u>
b) i)	art 4400		3	M2 for $\pi \times 10^2 \times 14$		
::\			4 1	or SC1 for $\pi \times 5^2 \times 14$		
ii) iii)	art 10400 art 13.9)	1 √ 3 √	ft their $a + bi$ ft for (their bii) ÷ (25 x 30)		
"")	art 15.9		3 V	M2 for (<i>their bii</i>) ÷ (25 x 30) or M1 for (<i>their bii</i>) ÷ (25 x 30)		9
a)	4, 7, 6, 4,	4, 2, 3	2	SC1 for 5 or 6 correct or 7 or		<u> </u>
b \	1		4	tallies		
b)	1 cao 2 cao		1 2	M1 for attempt at ranking lis	st seen	
d)	2.5 cao		2	M1 their $\sum f(x) \div \sum f$ imp		
\		<u> </u>	. 1	seen		
e) i)	0.23(3) or $\frac{7}{30}$	1 √	allow 23% ft from their table		
ii)	0.3 or $\frac{3}{10}$	$\frac{9}{0}$ or $\frac{9}{30}$	1 √	ft from their table		
f)	40		1 √	ft their table x 10. Allow 40)/300	10 19
a)	6 -4		1			
b) i)	Rotation	1000	M1	Half turn M1 AI , –1 for "syr	mmetry"	
		5, 6) o.e.	A1 A1	allow correct description of	fpoint	
ii)	Enlargen	nent	B1 B1	accont cools 2, v2 sts		
	s.f. 3 centre (1	.7)	В1 В1	accept scale 3, x3 etc accept'B' for (1,7)		
c) i)	3 cao	,- /	1	ignore units		
ii)	1 : 9 cao		2	SC1 for 27 seen		
d)	_2 6	-0.66 or better	2	M1 for correct answer nlt SC1 for $\frac{2}{3}$ oe or $-k$		
	- <u>-</u>	0.00 1.44	_			

Page 2	Mark Scheme	Syllabus
	MATHEMATICS – NOVEMBER 2003	0580/0581

	Page			heme Syllabus	.0
		MATHEMATIC	S – N	OVEMBER 2003 0580/0581	ANN PADAL
a)	i)	27	1		
	ii)	6	2	M1 for (39 - 3) ÷ 6	
	iii)	$\frac{P-3}{6}$ oe	2	M1 for P–3 seen or $\frac{P}{6} = \frac{6x+3}{6}$ oe	
		0e		Will for P=3 seem of $\frac{1}{6}$ = $\frac{1}{6}$ of	
				seen	
b)	i)	4x + 3		M1 for $9x + 4 - 2x - (3x + 1)$ oe	
					ı
				or SC1 for 4x or (+)3 in answer space	
	ii)	10, 16 and 23	3	M1 for $9x + 4 = 49$ oe A1 for $x = 5$	10
					23
a)	i)	44	2	SC1 for 40 to 48	
	ii)	52	3	B1 for 6 or 8 or 12 or 9 or 21 or 28	
				or 32 or 112 seen	
	;;:\	aubaid on reater suits	4	+M1 for adding 6 rectangles o.e.	
	iii)	cuboid or rectangular	1	allow rectangular cuboid but not cube or cubical	
	iv)	prism 52	1 1	ft from <i>their aii</i> (not strict ft)	
	v)	24	2	M1 for 2 x 3 x 4	
b)	i)	2(pq + qr + pr) oe as final	2	SC1 for <i>pq</i> or <i>qr</i> or <i>pr</i> seen or imp.	
,	,	answer		for both parts. Other letters used	
				consistently MR-1	
	ii)	pqr as final answer	2	M1 for pqr seen	13
a)		12.5	3	M1 for 7.5 x 12 oe or 80/12 oe seer	ו
		NB 4021 answer 12.5 working uses 75 and		+ M1 for $\frac{90-80}{80}$ x100 (explicit) or	
		800			
				$\frac{7.50 - 6.66}{6.66}$ x100 (explicit)	
				after M0 SC2 for <i>figs</i> 124 to 126	
				ww or SC1 for 112.5	
b)		120 minutes	3	B1 for $\frac{2}{5}$ or 180 or $\frac{3}{5}$ x 300 seen	
				5 100 or 5 x 300 seem	
				+ M1 for $\frac{2}{5}$ x 300 oe or 300-180	
_ `	: \	A a a sumata de la la constante de la constant		3	
C)	i)	Accurate ± bisector of	2	SC1 if accurate without arcs <u>or</u> incomplete line. Ignore extra lines	
		AB, with arcs ±1°±1mm complete inside figure		incomplete line. Ignore extra illies	
		Accurate bisector of <c< td=""><td>2</td><td>SC1 if accurate without arcs or</td><td></td></c<>	2	SC1 if accurate without arcs or	
_		with arcs as above		incomplete line as above	
	ii)	correct area shaded	2 √	Areas marked as diagram	
		1		ft from clear intention to draw perp.	
		Let 1		bisector and angle bisector	
		1 /2			
		1			12
1)	i)	150 (km)	1		
	ii)	15 000 000 oe (√)	2	MI for <i>their</i> a)i) x 100 x 1000	
L \	:\	4070 to 4000		or SC1 for <i>their</i> a)i) x 10 ⁿ when n>0	
)	i)	1270 to 1320	2	M1 for their 8.6 x their 150 must	
	ji)	(0)45 to (0)48 oe	1	have some evidence for their 8.6	
	ii) iii)	245 to 248	2	SC1 for any answer in the range	
	,		_	180 < x < 270	8
-					20

Page 3	Mark Scheme	Syllabus
	MATHEMATICS – NOVEMBER 2003	0580/0581

Page 3		Mark Sc	heme Syllab	us
	MATHEMA	TICS – N	OVEMBER 2003 0580/05	581
				MMM, BADACE
a) '	1 6 15 20 15 6 1	1		
	Sum 64	1	SC1 if 6 or 7 correct	•
	1 7 21 35 35 21 7 1	2	SCI II O OI 7 COITECT	
(Sum 128	1		
, ,	512 accept 2 ⁹	2	SC1 for 256	
ii) 2	2 ⁿ	2	SC1 for 2 x 2 x 2 seen or descrip	otion
;) [']	165 330 462	1		11
-	The first 6 numbers	1		
r	epeated in reverse			
(order			
				<u>11</u>
			ТО	TAL 104

November 2003

INTERNATIONAL GCSE

MARK SCHEME

MAXIMUM MARK: 130

SYLLABUS/COMPONENT: 0580/04, 0581/04

MATHEMATICS

Paper 4 (Extended)

Page 1	Mark Scheme	Syllabus
	IGCSE EXAMINATIONS – NOVEMBER 2003	0580/0581

F	Page	e 1	Mark Scheme		Syllabus
			IGCSE EXAMINATIONS – NOV	EMBE	R 2003 0580/0581
					dh
			Marks in brackets are totals for qu	estior	Syllabus R 2003 0580/0581 s or part questions. After B0, allow SC1 for reversed "correct" final ans. www2
((a)		144:96	B1	After B0 , allow SC1 for <u>reversed</u>
			Final answer 3:2 or 1.5:1 or 1:0.667	B1	"correct" final ans. www2
				(2)	
((b)	(i)	32 (children)	B1	
		(ii)	54 (adults off)	B1	
		(iii)	110 (adults on)	B1	
		(iv)	26 (=x) w.w.w.	B1	
				(4)	
((c)		$300 \times \frac{4}{thier(6+5+4)}$	M1	
			80 children	A1	www2
				(2)	
((d)	(i)	Final Ans. 21 13 or (0)9 13 pm	B1	Condone hrs but hrs and $\underline{\text{minutes}} \Rightarrow \textbf{BO}$
		(ii)	7 h 20 min (o.e) $\times \frac{10}{110} \left(\text{or} \times \frac{100}{110} \right)$	M1	Implied by 6 h 40 min or 400 min
			40 min	A1	www2
				(3)	
				(11)	
((a)	(i)	1.8(02)	B1	Throughout (a)(i)(ii)(iii) NO misreads allowed.
		(ii)	$1.99^2 = \frac{80h}{3600}$ o.e.	M1	Must be h , not \sqrt{h}
			(h =) 178(.2)	A1	ww2 (<u>Must</u> be correct – e.g. 178.4
					⇒ MO ww)
		(iii)	$A^2 = \frac{hm}{3600}$	M1	(First step must be correct from correct formula for <u>first</u> M1 .)
					Correctly squares at any stage
			$3600A^2 = hm$	M1	Correctly multiplies at any stage
			$\frac{3600A^2}{} = h$	M1	Correctly divides at any stage
			<u> </u>	(6)	Only a correct answer in this form can get M3 .
((b)	(i)	(x+4)(x-4)	B1	i.s.w. solutions in all (b)
		(ii)	x(x-16)	B1	Condone loss of final bracket in any (b)
		(iii)	(x-8)(x-1)	B2	
				(4)	

Page 2	Mark Scheme	Syllabus
	IGCSE EXAMINATIONS – NOVEMBER 2003	0580/0581

Page 2		Mark Scheme	Syllabus	
		IGCSE EXAMINATIONS – NOV	EMBE	R 2003 0580/0581
		•		Syllabus R 2003 0580/0581 No error seen and some working to reach final quoted equation. Must have = 0. (E = established)
(c)	(i)	$x(3x-9) = 2x^2 - 8$ o.e.	M1	19
		$2x^2 - 8 = 3x^2 - 9x$		No error seen and some working to reach final quoted equation. Must have
		$x^2 - 9x + 8 = 0$	E1	= 0. (E = established)
	(ii)	<i>x</i> = 1	B1	
		<i>x</i> = 8	B1	
	(iii)	time = 15 (sec) c.a.o.	B1	
		distance = 120 (m) c.a.o.	B1	
			(6)	
			(16)	
(a)	(i)	$17^2 + 32^2 - 2.17.32 \cos 40^\circ$	M2	Allow M1 for sign error or correct implicit eqn
		√their 479.54	M1	Dep M2. NOT for $\sqrt{225\cos 40^{\circ}}$ or $\sqrt{2146}$
		Answer in range 21.89 to 21.91 (m)	A1	www4
	(ii)	$\frac{\sin T}{17} = \frac{\sin 40^{\circ}}{\text{their } 21.9}$	M1	or $17^2 = 32^2 + (\text{their } 21.9)^2 - 2.32$. (their 21.9) cosT
		$\sin T = \frac{17 \sin 40^{\circ}}{\text{their } 21.9}$ (0.499)	M1	$\cos T = \frac{32^2 + (\text{their } 21.9)^2 - 17^2}{2.32. \text{ (their } 21.9)}$
		29.9°	A1	Accept 29.93° to 29.94°. www3
			(7)	
(b)	(i)	125° c.a.o.	B1	All bearings must be $0^{\circ} \le \theta \le 360^{\circ}$ to score
**	(ii)	305°	В1√	√ (180° + their 125°) correct
**	(iii)	335° or 334.9°	В1√	$\sqrt{\text{(their 305° + their } T) correct}$
			(3)	
(c)		$\tan(\hat{F}) = \frac{30}{32}$ o.e.	M1	$\frac{\text{or } F\hat{X}T = \tan^{-1} \frac{32}{30} \text{ clearly identified.}$
			A1	(43.15239°) www2 <u>NOT</u> 43.1
		43.2°	(2)	(43.13233) WWW2 <u>113.1</u> 43.1
			(12)	
(a)		Scale correct	S1	$0 \le t \le 7 \text{ (14 cm) and } 0 - 60 \uparrow \text{ (12 cm)}$
(α)		8 correct plots (0 , 0), (1 , 25),	"	Allow P2 for 6 or 7 correct
		(2, 37.5), (3, 43.8), (4, 46.9),	P3	P1 for 4 or 5 correct
		(5, 48.4), (6, 49.2), (7, 49.6)	'	Accuracy better than 2mm horizontally.
				In correct square ↑
		Reasonable curve through 8 points	C1	Not for linear or <u>bad</u> quality
			(5)	

		The state of
Page 3	Mark Scheme	Syllabus
	IGCSE EXAMINATIONS – NOVEMBER 2003	0580/0581

(b)	(i)	$f(8) = 49.8 \text{ or } 49\frac{103}{128} \text{ o.}$	e.	B1	Do not accept improper fractions
		$f(9) = 49.9 \text{ or } 49\frac{231}{256} \text{ o}$.e.	B1	
	(ii)	f(<i>t</i> large) ≈ 50		B1	`
				(3)	
(c)	(i)	Tangent drawn at $t = 2$		B1	Not a chord and not daylight
		Uses vert/horiz using so	cale	M1	Can be given after B0 if line not too far out
**		Answer correct for their	tangent	A1 √	
	(ii)	Acceleration or units		B1 (4)	Accept ms ⁻² , m/s ² , m/s/s.
(d)	(i)	Straight line through (0	, 10)	B1	h
		Straight line gradient 6		B1	Must be ruled and full length to earn B2
**	(ii)	one √ intersection value	e for t	В1√	
**		Second \sqrt{t} and range		В1√	
	(iii)	Distance = area (under	curve)	M1	
		First particle (f(t)) goes	further	A1	
				(6)	
				(18)	
arking	g final a	answers throughout this o	uestion		
(a)	(i)	0.2	o.e.	B1	Accept 2/10, 1/5, 20%
	(ii)	0.4	o.e.	B1	After first B0 , condone "2 in 10" type answers.
	····			1	
	(iii)	0.5	o.e.	B1	Never condone 2 : 10 type
	(III) (iv)		o.e.	B1 B1	Never condone 2 : 10 type
	` '				Never condone 2 : 10 type Accept "none", "nothing", 0/10, nil, zero
	(iv)	0.1		B1	
(b)	(iv)	0.1 0 2/10 x 1/9		B1 B1 (5) M1	Accept "none", "nothing", 0/10, nil, zero
(b)	(iv) (v)	0.1 0 2/10 x 1/9 1/45		B1 B1 (5) M1 A1	
(b)	(iv) (v)	0.1 0 2/10 x 1/9 1/45 3/10 x 2/9	o.e.	B1 B1 (5) M1	Accept "none", "nothing", 0/10, nil, zero Accept 2/90, 0.0222 2.22% www2
(b)	(iv) (v) (i)	0.1 0 2/10 x 1/9 1/45	o.e.	B1 B1 (5) M1 A1	Accept "none", "nothing", 0/10, nil, zero
(b)	(iv) (v) (i)	0.1 0 2/10 x 1/9 1/45 3/10 x 2/9	o.e.	B1 B1 (5) M1 A1 M1	Accept "none", "nothing", 0/10, nil, zero Accept 2/90, 0.0222 2.22% www2 Accept 6/90 etc, 0.0666(or 7), 6.66 or
(b)	(iv) (v) (i) (ii)	0.1 0 2/10 x 1/9 1/45 3/10 x 2/9 1/15	o.e.	B1 B1 (5) M1 A1 M1	Accept "none", "nothing", 0/10, nil, zero Accept 2/90, 0.0222 2.22% www2 Accept 6/90 etc, 0.0666(or 7), 6.66 or
(b)	(iv) (v) (i) (ii)	0.1 0 2/10 x 1/9 1/45 3/10 x 2/9 1/15 (their) 1/45 + (their) 1/1	o.e. o.e. 5 o.e.	B1 B1 (5) M1 A1 M1 A1	Accept "none", "nothing", 0/10, nil, zero Accept 2/90, 0.0222 2.22% www2 Accept 6/90 etc, 0.0666(or 7), 6.66 or 6.67% www2 Accept 8/90 etc, 0.0888(or 9), 8.88 or
(b)	(iv) (v) (i) (ii) (iii)	0.1 0 2/10 x 1/9 1/45 3/10 x 2/9 1/15 (their) 1/45 + (their) 1/1 4/45	o.e. o.e. 5 o.e.	B1 B1 (5) M1 A1 M1 A1	Accept "none", "nothing", 0/10, nil, zero Accept 2/90, 0.0222 2.22% www2 Accept 6/90 etc, 0.0666(or 7), 6.66 or 6.67% www2 Accept 8/90 etc, 0.0888(or 9), 8.88 or 8.89% www2
(b)	(iv) (v) (i) (ii) (iii)	0.1 0 2/10 x 1/9 1/45 3/10 x 2/9 1/15 (their) 1/45 + (their) 1/1 4/45 <u>Clearly</u> 1 – (their) 4.45	o.e. o.e. 5 o.e.	B1 B1 (5) M1 A1 M1 A1 M1 A1	Accept "none", "nothing", 0/10, nil, zero Accept 2/90, 0.0222 2.22% www2 Accept 6/90 etc, 0.0666(or 7), 6.66 or 6.67% www2 Accept 8/90 etc, 0.0888(or 9), 8.88 or 8.89% www2 Alternative method must be complete

		2	
Page 4	Mark Scheme	Syllabus	ડ્ર
	IGCSE EXAMINATIONS – NOVEMBER 2003	0580/0581	X
<u> </u>			

Page 4		Mark Scheme			Syllabus	2
		IGCSE EXAMINATIONS – NO	VEMBER	2003	0580/0581	Day
					•	di
(a)		$\pi(30)^2$ (50)	M1			76
		141 000 (cm ³)	A1	(141 300	to 141 430)	ww.
			(2)			•
(b)	(i)	18 (cm)	B1			ages for
	(ii)	$\cos\left(\frac{1}{2}\angle AOB\right) = \text{(their 18)/30}$	M1		thods e.g. $\sin A = 2$	ayes ioi
		x2	M1dep	,	,	
		∠AOB = 106.26° c.a.o	A1 (4)		ve 2 decimal places ndone = 106.3 after	
(c)	(i)	(their) $\frac{106.3}{360}$ used	M1			
		$\pi(30)^2$ used	M1			
		834 to 835.3 (cm ²)	A1	www3		
	(ii)	$\frac{1}{2}$.30.30sin (their) 106.3° or $\frac{1}{2}$.48.18	M1			
		431.8 to 432 (cm ²)	A1	www2		
	(iii)	Ans. Rounds to 403 cm ²	A1			
	()		(6)			
(d)	(i)	50 x (their) 403	M1			
**	()	20 100 to 20 200 (cm ³)	A 1√	√ correct	for their "403"	www2
**	(ii)	20.1 to 20.2 (litres)	B1√	√ their pr	evious answer ÷ 10	000
		•	(3)			
(e)		$k\left[\frac{1}{2}\text{their (a)} - \text{their (d)}\right]$	M1		k = .001 (litres) k at conversion error.	
		50.3 to 51 (litres)	A1	Marking f	final answer	www2
			(2)			
			(17)			
(a)	(i)	$F\begin{pmatrix} 2\\ -4 \end{pmatrix}$	M1 A1	description	for letters, A marks ons. If <u>no</u> letter giv correct description	
	(ii)	D x = 1	M1 A1			
	(iii)	E (2, -1)	M1 A1			
	(iv)	C (s.f.) 3	M1 A1			
	(v)	A Shear	M1 A1			
			(10)			

		mm
Page 5	Mark Scheme	Syllabus
	IGCSE EXAMINATIONS – NOVEMBER 2003	0580/0581
		90

					To a
	(b)		$(-1-2)$ $\begin{pmatrix} 1 & 3 \\ 5 & 7 \end{pmatrix}$ or QP	M1	Penalty –1 for <u>each</u> wrong one possible. Allow SC1 for one correct
			(– 11 –17) <u>final</u> ans	A2	Allow SC1 for one correct
			$ (1 2 3) \begin{pmatrix} -1 \\ 2 \\ 3 \end{pmatrix} $ or RS	M1	
			(12)	A2	Brackets essential here.
				(6)	Allow SC1 for 12 or -1 + 4 + 9
				(16)	
8	(a)	(i)	10 < M ≤ 15	B1	Must clearly mean this and not 32
		(ii)	Midpoints 5, 12.5, 17.5, 22.5, 32.5	M1	Allow for 3 or 4 correct
			$\sum fx \ (60 + 400 + 490 + 540 + 780)$	M1	(2270) Needs previous M1 or only marginally out
			(their) 2270 ÷ 120	M1	dep previous M1
			18.9 (2) (kg)	A1	www4
			(1)		
		(iii)	36°	B1	
				(6)	
	(b)		Horizontal scale 2 cm ≡ 5 units	S1	$0 \le M \le 40$. Accuracy < 2 mm.
			(numbered or used correctly)		If S0 (e.g. 1 cm ≡ 5 units) can score B5
					If S0 (e.g. 0, 10, 15) can only score on correct width bars. Penalty –1 for polygon superimposed.
			Heights 3k, 16k, 14k, 12k, 4k cm	B5	If not scored, decide on their "k" and allow SC1 for each "correct" bar. (Needs \geq 2 bars to decide on value of k if k \neq 1.)
			Their k = 1	B1	
				(7)	
				(13)	
9	(a)	(i)	(Diagram) 5 only	B1	
		(ii)	(Diagram) 4 only	B1	
		(iii)	(Diagram) 2 only	B1	
				(3)	
		(111)	(Diagraff) 2 Ully	(3)	

		May.
Page 6	Mark Scheme	Syllabus
	IGCSE EXAMINATIONS – NOVEMBER 2003	0580/0581

			Car
(b)	Diagram 1 9 (cm²)	B1	9.00 to 3 s.f.
	Diagrams 2 and 3 have same area	B1	at a
	One of them $\frac{1}{2} \times 3 \times 3$	M1	9.00 to 3 s.f.
	$4\frac{1}{2} \text{ (cm}^2\text{)}$	A1	www2
	Diagram 4 $\frac{1}{4} \pi 3^2$ s.o.i.	M1	(7.07 cm ²)
	$\frac{1}{2}$ x 6 x 6 – their $9\pi/4$	M1	indep. i.e. $18 - k\pi$ where k numerical
	10.9 (cm²)	A1	www3
	Diagram 5 22 $\frac{1}{2}$ ° s.o.i	M1	$(bc = \sqrt{72})$
	6 tan22 $\frac{1}{2}$ °	M1	(2.485) (This is AD <u>or</u> DE)
	$\frac{1}{2}$ (6 – their 2.485) x 6	dep.M1	or $18 - \frac{1}{2} \times 6 \times 10^{-2}$ x 6 x their 2.485. (o.e.)
	10.5 (cm ²)	A1	www4
		(11)	
		(14)	